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For the construction of desired molecules, the-@ bond Table 1. Ni-Catalyzed Stereoselective Homoallylation of Anisidine
formation via nucleophilic allylation of carbonyl compounds is 'Mine, Generated in Situ, with Isoprene
among the most widely used methods. This is due to the high un®  Aldehyde time 2: % isolated 3
nucleophilicity and easy availability of allylic nucleophilic spe- (h) [syn:antil® % isolated
cies: allylmetals and metalloids (M Li, Mg, Zn, B, Si, Sn, etc.),

CHO HN—p-An
metal enolates, and enol ethers of esters, ketones, and aldéhydes. 16 1 3b: 6
Compared with allylation, homoallylation has been by far less /©/
utilized probably due to the low nucleophilicity and difficult 2b: 89 [8:1]
availability of homoallylmetal species. CHO HN-p-An
2 /©/ 1 3c:7
cat Ni(acac), OH cl

Cl

H, H 2¢: 89 [7:1]
+ RCHO \)\/'\ (1) ¢
\/K EtM, rt X R
1 o HN-p-An
3b CHO g5 X o 3d: 4
PhCHO cat Ni(acac), H |-|N’R @/ \ /
\/K + TR \/I\/L 2d: 82 [20:1]
2

RNH,  EtZn,rt Ph
o CH,O HN-p-An .
wn? R % isolated of 2 % isolated R @ 4 (CHZO)n 2 W 3e: 1
(syn:anti) of3 HN 2e: 78
1 Ph 84 (10:1) 4 Ph d CHO HN—p—An
2 pAnisyl 2a:93(10:1)  3a:5 5 \r 05 o 3f: 20
3 p-BrPh 81 (>30:1) 4 3
4  Benzyl 21 (nd) 6 2f: 62 [>30:1]

a . .. .
For the reaction conditions, see footnote a in Table 1 and text. aReaction procedure: An aldehyde (1 mmol) and anisidine (2 mmol)

in THF (2 mL) were reacteq at 5 for 10 h gnder N and then Ni(acag)
Recently, we have demonstrated that under nickel catalysis, 1,3-Eg-é mm‘;‘l) XV?\\/T qnlsr?gl\;de )ma-tn;loFoﬁr? trgrl;?b;’g{)r?en‘feo$4ﬂ‘r12mp?el)l”'0%n£§fﬁgme
. . . . I X u | |
leﬁlES Se_r\_/e as a homoallyl anion ?quw_alent and undergo r‘uCleo'indicated.b An aldehyde (1.0 mmol) and anisidine (1.1 mmélpiaste-
philic addition to aldehydes to furnish bishomoallyl alcohols (eq reomeric ratios were determined by 400 MHzand 100 MHZLC NMR.
1), where a formal hydride anion is derived from the methyl of the p-An = p-methoxyphenyl9 Imine formation: Isobutyraldehyde (1 mmol)
ethyl group of triethylborane (E8)? or diethylzinc (E5Zn)3 The and anisidine (2 mmol) were reacted at room temperature for 20 h.
reaction is highly regio- and stereoselective. For example, isoprene . . . )
reacts at the C1 position with benzaldehyde and providearitj3: rt—50°C, and then, without removing water produced, Ni(agac)
(R = Ph, eq 1) with 95% diastereomeric selectivity. _(10 r_nol %), isoprene (4 mmol), andEZn (360 mol %) were added
Here we would like to disclose that the same combination of [N this order at room temperature.
reagents, Ni(acag)and EsZn, works for the homoallylation of We utilizedp-anisidine, because tfemethoxyphenyl group can
aldimines (eq 2. The reaction is remarkable in many respects. P& €asily removed oxidatively, giving primary amines in good
First, the reaction proceeds with an opposite sense of stereoselecYi€lds® Table 1 demonstrates the scope of the reaction regarding
tivity to that of aldehydes, providing 18yn?2 selectivity. Regio- the kinds of aldehydes that encompasses not only aromatic
selectivity with respect to dienes (C1 or C4) is slightly lower than @/dehydes (runs -13) but also aliphatic aldehydes, including
that observed for aldehydes, and ison@ese produced as minor ~ Paraformaldehyde (runs 4 and 5). N o
products. Second, despite the diminished electrophilicity of aldi- It may be important to note that the isolated imines and the imines
mines? the homoallylation is completed at room temperature within 9€nerated in situ behave differently. Thus, isolated formaldehyde-
1 h. Third, aniline and its para-substituted derivatives (both with anisidine imine does not react under usual conditions and is
electron-donating OMe and electron-withdrawing Br) give satisfac- '¢covered almost completely after 24 h at room temperature (cf.
tory results (runs %3, eq 2), while aliphatic amines do not (run  "Un 4, Table 1). On the other h_a_md, |so_Iated benzaldehy_de-an|5|d|ne
4). Fourth, the reaction can be undertaken in one flask with great IMine reacts under usual conditions (with 2.4 mmol oZtinstead
operational ease: a mixture of an aldehyde (1 mmol) and an ©f 3.6 mmol, 0.5 h at room temperature in THF); howerand

aromatic amine (1:2.0 mmol) was stirred in THF for510 h at 3aare isolated in 34% (syn:anti 4:1) and 14% yields, respectively
(cf. run 2, eq 2), along with a double-bond positional isomer of

T Graduate School of Science and Technology. 2a, 5-(p-anisidyl)-3-methyl-5-phenyl-2-pentend) (n 42% isolated
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Table 2. Ni-Catalyzed Stereoselective Homoallylation of Aldimine
Generated in Situ from Furfural and Anisidine with Various
1,3-Dienes

run? Diene  time (h) 2: % isolated [syn:anti]?

T™MS Tprn
1 0.5 2g: 81 [>30:1]
\/g X Fur
HN—-p-An
2 /\/& 0.5 /\J\/L 2h: 98 [>30:1]
A x
HN pAn
3 0.5 2i: 94 [15:1]
4 N 05 « HN=PAN o1 98 [15:1]
N Fur
HN—-p-An
5 @ d 2k: 67 [>30:1]

aSee footnote a in Table ®.See footnote ¢ in Table 1. Fear 2-furyl.

Scheme 1. Possible Intermediates Il and VI for the Stereo- and
Regiocontrolled Formation of 1,3-syn-2.

‘O : pA p-AD m"
l EIQZn l Et,Zn | Et:zn
Me Me
/L *V/’LH “*/)H
g R 4
\ N| J% \\"'leH N)%R \\"'NI\ N)%H
“ZnEt oAb ZNEt Emll S 2ZnEt
|2 | v [
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yield. It turned out that water produced in situ had nothing to do
with the reactior!, while p-anisidine played a pivotal role in
determining the course of reaction; thus, in the presence of 1 equiv
of p-anisidine (with 2.4 mmol of BEZn), 2a and3a were obtained
in 89 (syn:anti= 7:1) and 9% yields, respectively. Aimost the same
results were obtained in the presencepedinisidine and water
(2 mmol each, with 3.6 equiv of EZn).

The reaction is applicable to a wide structural variety of 1,3-

viously 311 the 1,3-anti selectivity for aldehydes stems from an
equatorial orientation of an aldehyde in intermediatéor the case

of aldimines, on the other hand, placing an aldimine in the same
equatorial position causes severe steric repulsion betpragisyl

and a ligand on nickel(ll) with a square planar configuration in
intermediatdl . Hence, as a second choice, an aldimine would take
on a diaxial configuration (intermediatd ),*212 which leads to
1,3syn2* via 8-H elimination and cis-reductive elimination of
an Ni—H intermediaté/| . In intermediatéll , there still arises 1,3-
diaxial repulsion between methyl and R. This may be the reason
sterically demanding aldimines, typified by run 5 in Table 1, tend
to give 3 in considerable amounts.

In conclusion, aldimines formed in situ from aralkyl aldehydes
and aromatic amines undergo homoallylation regio- and stereose-
lectively by reductive coupling with dienes by the catalysis of nickel
and provide 1,3yn2in good yields and with high stereoselectivity,
where EfZn serves as a reducing agent (an H donor).
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